翻訳と辞書
Words near each other
・ Schoenobius endochralis
・ Schoenobius flava
・ Schoenobius gigantella
・ Schoenobius immeritalis
・ Schoenobius irrorata
・ Schoenobius latignathosius
・ Schoenobius molybdoplecta
・ Schoenobius parabolistes
・ Schoenobius pyraustalis
・ Schoenobius retractalis
・ Schoenobius sagitella
・ Schoenobius scirpus
・ Schoenobius vittatalis
・ Schoenobius vittatus
・ Schoenocaulon
Schnirelmann density
・ Schnitger
・ Schnitger organ (Hamburg)
・ Schnitler
・ Schnitt
・ Schnitt (magazine)
・ Schnitt Acht
・ Schnittlauchinsel
・ Schnitz un knepp
・ Schnitzel
・ Schnitzel (disambiguation)
・ Schnitzel (film)
・ Schnitzel Paradise
・ Schnitzelbank
・ Schnitzelburg, Louisville


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schnirelmann density : ウィキペディア英語版
Schnirelmann density
In additive number theory, the Schnirelmann density of a sequence of numbers is a way to measure how "dense" the sequence is. It is named after Russian mathematician L.G. Schnirelmann, who was the first to study it.〔Schnirelmann, L.G. (1930). "(On the additive properties of numbers )", first published in "Proceedings of the Don Polytechnic Institute in Novocherkassk" (in Russian), vol XIV (1930), pp. 3-27, and reprinted in "Uspekhi Matematicheskikh Nauk" (in Russian), 1939, no. 6, 9–25.〕〔Schnirelmann, L.G. (1933). First published as "(Über additive Eigenschaften von Zahlen )" in "Mathematische Annalen" (in German), vol 107 (1933), 649-690, and reprinted as "(On the additive properties of numbers )" in "Uspekhin. Matematicheskikh Nauk" (in Russian), 1940, no. 7, 7–46.〕
==Definition==
The Schnirelmann density of a set of natural numbers ''A'' is defined as
:\sigma A = \inf_n \frac,
where ''A''(''n'') denotes the number of elements of ''A'' not exceeding ''n'' and inf is infimum.〔Nathanson (1996) pp.191–192〕
The Schnirelmann density is well-defined even if the limit of ''A''(''n'')/''n'' as fails to exist (see asymptotic density).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schnirelmann density」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.